The problem is, that most languages have no native support other than 32 or 64 bit floats and some representations on the wire don’t either. And most underlying processors don’t have arbitrary precision support either.
So either you choose speed and sacrifice precision, or you choose precision and sacrifice speed. The architecture might not support arbitrary precision but most languages have a bignum/bigdecimal library that will do it more slowly. It might be necessary to marshal or store those values in databases or over the wire in whatever hacky way necessary (e.g. encapsulating values in a string).
I know this is in jest, but if 0.1+0.2!=0.3 hasn’t caught you out at least once, then you haven’t even done any programming.
IMO they should just remove the equality operator on floats.
That should really be written as the gamma function, because factorial is only defined for members of Z. /s
From time to time I see this pattern in memes, but what is the original meme / situation?
It’s my favourite format. I think the original was ‘stop doing math’
While we’re at it, what the hell is -0 and how does it differ from 0?
It’s the negative version
So it’s just like 0 but with an evil goatee?
Look at the graph of y=tan(x)+ⲡ/2
-0 and +0 are completely different.
As a programmer who grew up without a FPU (Archimedes/Acorn), I have never liked float. But I thought this war had been lost a long time ago. Floats are everywhere. I’ve not done graphics for a bit, but I never saw a graphics card that took any form of fixed point. All geometry you load in is in floats. The shaders all work in floats.
Briefly ARM MCU work was non-float, but loads of those have float support now.
I mean you can tell good low level programmers because of how they feel about floats. But the battle does seam lost. There is lots of bit of technology that has taken turns I don’t like. Sometimes the market/bazaar has spoken and it’s wrong, but you still have to grudgingly go with it or everything is too difficult.
all work in floats
We even have
float16 / float8
now for low-accuracy hi-throughput work.Even float4. You get +/- 0, 0.5, 1, 1.5, 2, 3, Inf, and two values for NaN.
Come to think of it, the idea of -NaN tickles me a bit. “It’s not a number, but it’s a negative not a number”.
I think you got that wrong, you got +Inf, -Inf and two NaNs, but they’re both just NaN. As you wrote signed NaN makes no sense, though technically speaking they still have a sign bit.
Right, there’s no -NaN. There are two different values of NaN. Which is why I tried to separate that clause, but maybe it wasn’t clear enough.